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Here 

k is 

small 

(2) 

where 

On the Inverse of an In tegra l  Operator 

bY 

Peter Wolf e 

We wish t o  consider the  in tegra l  equation 

f ( x )  = [- 1 H:')(k]x-tJ)P(t)dt 
i 

-I 

H P )  denotes the zero order Hankel function of the first kind., 

a non-zero constant with Re k 2 0, Im k 2 0, Recall  t ha t  f o r  

r we have \ 

h ( r )  and h ' ( r )  a r e  f i n i t e  a t  r = 0. The equation (1) arises i n  

connection with the solut ion of t he  reduced wave equation i n  the plane 

s l i t  along the  x-axis from -1 t o  +1 [l]. 

In [l] the  following r e su l t  was  proven: U t  h denote the  class of 

complex functions 

each point  of ( -191) and fur ther  satisfy the condition t h a t  near x = 1 

9 which are Htilder continuous i n  a neighborhood of 

Then given f ( x )  

unique solution, I n  t h i s  paper we w i l l  consider equation (1) 

as a mapping fro& one Hi lber t  space i n t o  another. We w i l l  show that i f  

the domain and range spaces are defined appropriately the i n t e g r a l  opera- 

t o r  i n  (1) becomes a one t o  one continuous mapping of one Hi lber t  space 

such t h a t  f' is HiSlder continuous,equation (1) has a 

9 E h., 



. 

2 

onto another and hence by Banach's open mapping theorem has a continuous 

inverse. It w i l l  be shown tha t  i f  f i s  s u f f i c i e n t l y  smooth, the  solu- 

t i o n s  found here coincide with those found i n  [l]. 

2 4  2 +  - 1 
-po9 ht p ( t )  = (1- t ) , -1 < t < 1 and q ( t )  (1- t ) 

-1 < t < 1 e We define three spaces: 

a W 2 ( q )  = (f 1 f is absolutely continuous on [-1,1] and f '  (which 

exists a o e o  with respect t o  bbesgue measure) E %(q)  } 
If i n  %(p) we define I f  l2 lfj2(1- t 2 - 1  ) 2 d t  and i n  %(q) 

$(PI 

If] (1- t 2 L  ) 2 d t  then these spaces are 
= i," we define 1 f l2 

L&q) 

Hilber t  spaces, In  $(q) we define 

WR then have: 

A 
Theorem 1. Under the above nom W (q)  is  a Hi lber t  space. 2 

Proof. We first  note that  %(q) C %(-191) ( the  usual c l a s s  of func- 

t i ons  integrable  over (-1,l) with respect  t o  Lebesgue measure) and the 

in jec t ion  is  continuous To see t h i s  we note 1 
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where we have used the  Schwarz inequality i n  L,(q) .  
L 

{fn) is  a Cauchy sequence i n  Wqq), In p a r t i c u l a r  Now suppose 2 

{f:} is Cauchy i n  % ( q ) .  Thus 3 g E L2(q) 3 1 fi- g 0. 

by /s and in tegra te  from -1 t o  1 

as m,n ---3 QD. Thus fn(- l )  --9 C as n ---9 QD. Let 

f ( x )  = C + I1 g ( t ) d t .  
X 

f is absolutely continuous and 

We now consider t he  operator defined by (1). 

1 

Let 

(3;  I / ,  7 f \x/ 1 3 - H!')!k!x-t!) p ( t ) d t  = (L$P)(x). U 2 J-1 

I 
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A s  i s  pointed out i n  [l] 

under the in t eg ra l  s ign and obtain ( i n  view of (2)  ) : 

i f  Ip i s  Hb'lder continuous we may d i f f e ren t i a t e  

where the f irst  term mus t  be taken as a Cauchy Pr inc ipa l  Value and i n  the  

second term k ( t , x )  i s  a cc..,rmous kernel. 

We now consider (4) as an equation i n  L2(q). Iet F:  L2(q) - L2(p) 

be defined by ( F f )  ( t )  =&? f ( t ) .  Then F is  an isometry of $(q) 

onto $(p) . Define an operator T by 

Then we have the following theorem [2] . 
Theorem 2. 

onto $(q) . 
funct ion g(x) E 1. Further the  r e s t r i c t i o n ,  To> of T t o  the orthogondl 

complement H(p) of t h f s  n u l l  space is an i sometry  o f  H(p) onto $(q) 

The operator defined by (5) i s  a continuous mapping from $(p) 

I.ts n u l l  space i s  one dimensional and i s  spanned by the 

with inverse mapping 

. r l  I Thus the mapping a d t  
x-t 

can be wr i t ten  as TFY. We see 

t h a t  it maps L2( q) continuously onto L 2 (  q) with a one dimensional n u l l  

space spanned by p ( t )  = (l-t2)-' . We r e c a l l  the de f in i t i on  of the in- 

dex of an operator S from one l inear  space X t o  another l i n e a r  space Y. 
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Suppose S has a f i n i t e  dimensional n u l l  space N(S), dim N(S) = a(S), 

and t h a t  the range of  S, R(S), has f i n i t e  codimension, 

codim R(S) = dim Y / R ( S )  = p(S)  ( i n  which case S i s  s a i d  t o  be a 

Fredholm operator).  The integer i (S )  = a(S) - P(S)  is called the 

index of the  operator S, Thus we have t h a t  TF is  a Fredholm operator 

with u(TF) = l9 P(TF) 0 ,  Thus i(TF) = 41. Since k ( t , x )  is con- 

- 

tinuous so t h a t  

k ( t9x )  y(t) d t  represents a compact operator, K from $(q) in-  i,' 09 

t o  $(q). 

there  e x i s t s  a l i n e a r  bounded operator Q mapping %(q)  

t h a t  

N o w  the operator "F admits a l e f t  regular izat ion [ 3 ] ,  i .e,  

i n t o  $(q) such 

Q(TF) = 1.K 

where I i s  the iden t i ty  i n  L2(q) and K i s  a compact operator ( w e  take 

Q = F Ti . Then K = -Po where Po i s  the project ion onto the  space 

spanned by P ( t )  = 

-1 1 

. W e  then note:  1. /z 
Theorem 3 [ 31 , 

and has f i n i t e  index and K i s  any compact operator we have 

If a bounded operator A admits a l e f t  regular izat ion 

Hence we conclude t h a t  mapping defined by the  r igh t  hand s ide of (4)  

i s  a continuous mapping of L2(q) i n t o  L2(q) with index equal t o  1, 

Wp ret.-um- now t o  the operator L defined by ( 3 ) ,  We have 
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tinuous (compact) operator from ~ ~ ( 9 )  i n t o  L2(q) 

Theorem b o  The operator L maps L2(q) i n t o  $(q). 

Proof. Given pe L 2 ( q ) .  bt, 

Let {yn} be a sequence of Hb'lder continuous functions 2 

i y n -  ylL,(q)  n 
* 0, L e t  q = L O n n "  

Then we know t h a t  'yn is  d i f f e ren t i ab le  on (-191) and 

By cont inui ty  of the mappings L and TF+Ko 

-{PA } a re  Cauchy sequences i n  %(q)  %.e. { yn ] is  a Cauchy sequence 

we see t h a t  

PS. (I/ a.e, In f a c t  9 vo since (I) can eas i ly  be shown t o  be 

continuous and qo i s  absolutely continuous, Also 

Hence the theorem is proven, 

x =: qk aoe. 

Theorem 

Proof. 

The operator L is a one t o  one map of $(q) onto $( q )  , 

Let f e$(q)  and consider the equation in L2(q) 
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We know t h a t  the index of (TF + KO) is 1, Thus u(TF + KO) 2 1. Let 

qo E L (9) s a t i s f y  the equation 2 

k( t , x )  i s  HClder continuous i n  x uniformly i n  t (see [41 p. 17) Thus 

an easy argument shows tha t  i f  qo E L2('q) ,9 KO Po is  HGlder continuous. 

Thus applying the operator F-lT,i we see tha t  

b u t  from t h i s  w e  see t h a t  

a r e  a t  the same time i n  h ,  

t h a t  there e x i s t s  exactly 1 l inear ly  independent solution of (6)  i n  I+(q), 

say jdOe Further Co where Co i s  a non zero constant. Thus 

yo e h. Hence a l l  solut ions of ( 7 )  i n  L2(q)  

Hence applying arguments as i n  [l] w e  see 

a(TF * KO) = P, p(TF * KO) 0, i o e o  TF *. KO is onto. Let pf be 

a solut ion of (6 )  e This i s  a 

function i n  W;(q) with derivative Thus 

Then we consider the function f - L pf 
f' - (TF * KO) yf = 0 aoeo  

f- L $Pf = Cf where Cf i s  a def in i te  constant,  Thus 9% = pf * - Cf Po 
cO 

satisfies L 9" f The above argument shows t h a t  t h i s  so lu t ion  i s  

unique I 

Theorem 6. Lml is a continuous mapping from W$(q) onto % ( q ) e  

Proof = Apply Banach 1 s open mapping theorem 



a 

Fina l ly  we note t h a t  i f  f’ is  Holder continuous and i s  the so lu-  

t i o n  of L p  =: f we have 

F-lT,’ as i s  the proof of Theorem 5 we again see t h a t  

the solut ions found here coincide with those found i n  [l] e 

(TF + K)? = fP and applying the operator 

Sp E h. Hence 
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